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Voter turnout has long been considered one of the most important barometers of the health of

democracy (e.g., Tingsten 1937; Lijphart 1997; Franklin 2004). For democratic elections to

accurately represent the will of the people, the people need to show up to the polls. In close

elections, small changes in turnout can even determine which party or candidate wins, and

consequently, which public policies get implemented (e.g., Martinez and Gill 2005; Hansford

and Gomez 2010; Fowler 2013). Reflecting this central importance to both democratic theory

and the practical goals of politicians seeking office, an immense comparative literature aims

to explain not only which citizens are more likely to vote (e.g., Wolfinger and Rosenstone

1980; Brady, Verba, and Schlozman 1995; Fowler, Baker, and Dawes 2008), but also why

there is variation in participation across different contexts (e.g., Jackman 1987; Blais 2006;

Anzia 2014; Cancela and Geys 2016; Cox, Fiva, and Smith 2016).

A key challenge confronting research in this area is the fact that fine-grained (especially

individual-level) measures of turnout are often limited in availability due to privacy concerns.

Only a few governments disclose the administrative records of voters (e.g., Martikainen,

Martikainen, and Wass 2005; Bhatti, Hansen, and Wass 2012), and these are often difficult

or costly to obtain.1 Meanwhile, self-reported turnout in surveys tends to be inaccurate, due

to social desirability bias and over-reporting (e.g., Brockington and Karp 2005; Holbrook

and Krosnick 2010; Ansolabehere and Hersh 2012). In most cases, official turnout data are

only disclosed after some amount of aggregation, often at the level of entire municipalities or

counties. To obtain data at smaller units of aggregation, such as polling stations, researchers

may need to make cumbersome information disclosure requests to local governments.

When turnout data are not optimally (dis-)aggregated to test a given hypothesis, re-

searchers risk exposure to a number of statistical problems, including a reduction in statisti-

cal power, the ecological inference problem and aggregation bias (King 2013; Matsusaka and

Palda 1993), and the modifiable areal unit problem (Fotheringham and Wong 1991). As a

result, the limited availability of micro-scale turnout data may force researchers to give up
1Studies of voting behavior in the United States can use voter files compiled by private companies (e.g.,

Nyhan, Skovron, and Titiunik 2017).
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on linking many geographical factors of interest to their outcome variables, or to compromise

their research design with a suboptimal unit of analysis.

Recent advances in big data provide an opportunity to creatively overcome these kinds

of challenges. Researchers can now construct treatment and outcome variables based on ge-

ographic information contained in previously underutilized data sources, examine previously

untestable hypotheses, and provide new insights into enduring questions (e.g., Moore and

Reeves 2020). These advances include (1) the ability to quantify spatial information such as

maps, aerial photography, and satellite photography and sensors; and (2) the availability of

mobility data collected from Global Positioning System (GPS) satellites, Wi-Fi spots, and

cellular phone base-stations.

In this study, we introduce and explain a method for generating an alternative measure of

voter turnout from cell-phone mobility data when official administrative data are unavailable

at the desired unit of analysis, and demonstrate its validity and substantive utility with

two applications of interest to political scientists. The key idea behind our approach is

that cell-phone users can be considered to have voted if they approached the location of a

designated polling station during voting hours on an election day. With some limitations

we will describe, measuring turnout with this approach allows researchers to create a proxy

for voting behavior at smaller units of aggregation, such as neighborhoods, or for individual

voters.

While we make a unique contribution to the literature and methods for studying turnout,

our approach builds on a growing number of studies that use cell-phone mobility data to

answer substantive questions of importance to political science and other disciplines (e.g.,

Chen et al. 2019; Rotman and Shalev 2020; Sobolev et al. 2020). Some existing studies

involve the summation of GPS signals representing pedestrian traffic aggregated at points

of interests such as major train stations (e.g., Google 2020). Others record any movement

of cell-phone signals and regard this as a measure of users’ activity. This approach has been

used to analyze citizens’ behavior under the stay-at-home mandates of COVID-19 pandemic
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(e.g., Jay et al. 2020; Clinton et al. 2021). However, people go to train stations or move

about town for many reasons—so in many cases it is difficult to attribute any particular

meaning to users’ mobility patterns.

Another stream of research complements the semantic vacuum of mobility data by uti-

lizing geo-tagged data from social network services (SNS) such as Twitter and Weibo to

analyze the reasons behind a user being in a given location. In these analyses, if an SNS

user tweets that he or she is engaging in some activity, the location from which the user

tweeted is assumed to be where the activity took place (e.g., Steinert-Threlkeld 2017; Hobbs

and Lajevardi 2019). This approach opens up the possibility of providing mobility data with

broader meaning, but still relies on stated information (i.e., tweets) for the content of the

activity. Moreover, SNS users are concentrated in younger generations and tend to have

opinions and behavior that are distinct from the general voting population.

Our mobility data come from the traffic records of cell-phone users on an election day and

a reference day in the 23 special administrative wards comprising the central metropolitan

area of Tokyo, Japan. The reference day data allow us to apply a difference-in-differences

(DID) design to estimate voting behavior (e.g., Nunn and Qian 2011). Altogether, the

mobility data contain over 40 million entries for about 300 thousand unique user IDs. We

first discuss how we remove “noise,” or miscoded turnout, from the data. Then, we tune

the parameters for data processing through validating our measure using administrative

turnout records and census-based population counts aggregated at the level of a voting

precinct (roughly the size of several neighborhoods combined).2 These tuning and validation

processes show a stable performance of the measure with changing parameters, and a strong

positive correlation between the estimated population counts and turnout from our data and

the actual census population counts and recorded turnout at the precinct level.
2In Japan, the smallest administrative unit for which aggregated voter turnout is available is the voting

precinct (tōhyō-ku) which consists of several neighborhoods. Turnout records at the polling station level are
only provided upon request in most municipalities, and some neighborhoods are divided into a number of
arbitrarily smaller areas, each of which belongs to a different voting precinct. As a result, using these data
in combination with other statistics is a challenge.
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We next present two applications to demonstrate the substantive utility of our approach

for studying important questions of interest at smaller units of analysis. Our first application

takes on the rational voter model (Downs 1957; Riker and Ordeshook 1968; Aldrich 1993) to

explore the individual-level relationship between the cost of voting (proxied by the distance

to a designated polling station) and the decision to vote. Our analysis using estimated

turnout based on cell-phone traffic confirms that election-day turnout is indeed lower for

individuals whose designated polling stations are further from their homes, corroborating

existing evidence from various contexts based on alternative measures (e.g., Haspel and

Knotts 2005; Bhatti 2012; Gibson et al. 2013; Cantoni 2020; Garnett and Grogan 2021). The

analysis is followed by two types of sensitivity analyses to gauge the impacts of misspecified

tuning parameters and miscoded cell-phone users living especially near to a polling station.

Our second application investigates the relationship between wartime destruction and

present-day voter participation. Controversy persists over whether exposure to political vio-

lence or wartime destruction increases or decreases the short-term and long-term propensity

to vote (e.g., Blattman 2009; Bellows and Miguel 2009; Gilligan, Pasquale, and Samii 2014;

Lupu and Peisakhin 2017; Kage 2021). We contribute additional empirical evidence to this

debate by combining our mobility data with detailed data on neighborhood-level damages

caused by the firebombing of Tokyo during World War II (Harada, Ito, and Smith 2021).

Our mobility-based estimates show significantly lower turnout in the neighborhoods that

were most damaged by the firebombing, a long-term negative effect that runs counter to

some of the existing evidence of positive effects of war violence on turnout, but which is con-

sistent with evidence that wartime destruction lowers social capital and other socioeconomic

indicators of neighborhood well-being (Harada, Ito, and Smith 2021).
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Data and Methods

This section explains our data sources and methods for constructing our GPS-based estimate

of voter turnout.

Polling Station Data

Information on polling stations was collected from the election administration commissions

for each of Tokyo’s 23 wards or their websites. Specifically, we requested the IDs and names

of all polling stations, which households in neighborhoods are assigned to each station, the

number of registered voters, and turnout. We then used a correspondence table between

neighborhoods and polling stations to refine the prediction. The last two items (registered

voters and turnout) are used for validation purposes. The level of detail for the location of

polling stations differs across wards.

The locations of the polling stations were identified in the following way. First, we

manually searched the location of each polling station from its name (and address whenever

available) using Google Maps. Except for several cases, the locations were uniquely identified,

and when multiple entries were found for a single name, we collected further information

about the polling station, such as its address. When the buildings did not appear in Google

Maps due to reconstruction, we referred to aerial photography from several years ago.3

Through these processes, all of the geographical locations of polling stations were identified.

We use the coordinates of the polling stations as the center of a circle encompassing the

building objects, and whether a cell-phone user enters within this circle is the basis for our

voting measure. The coordinates of the polling stations were therefore manually measured

at the midpoint of the longest diameter for each building identified above to minimize the

distance to the furthest edge of the building.4 This approach is also easier to administer
3Specifically, we referred the following website by Geospatial Authority of Japan, https://maps.gsi.

go.jp.
4Some wards provided only the name of the facility (e.g., ABC elementary school), while other wards

provide the exact pinpointed location of the facility (e.g., the gym of XYZ elementary school). In identifying
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(a) Location of polling stations (b) 10 sampled tracking records

Figure 1: Illustration of data: polling stations and cell-phone mobility in Tokyo
Note: In the left panel (a), the red and green points represent the locations of election-day polling stations
and early-voting polling stations, respectively. The right panel (b) illustrates the cell-phone mobility of 10
sampled users. Both panels were created based on data for the House of Councillors election on July 21,
2019.

than manually calculating the geometric center of a convex hull for each building.5 The

1,118 election-day polling stations and 205 early-voting polling stations for the upper house

(House of Councillors) election are shown in red and green, respectively in Figure 1a. We

see that the polling stations are located across all 23 wards.

Mobility Data

We obtained cell-phone mobility data (called “fluid population data”) from Agoop, a sub-

sidiary company of Softbank, which is the third largest cell-phone carrier in Japan (Agoop

Corporation 2020). This data set consists of the coordinates obtained from the onboard GPS

of iOS and Android devices. The coordinates are recorded every five minutes, but only when

the device is turned on (for Android devices), or a user explicitly allows the software to use

the location (coordinates) of polling stations, we utilized the most detailed information available.
5Geocoding with Google Maps returns the stored coordinates associated with building names and ad-

dresses, but many of them are not close to the coordinates obtained with our approach.
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Table 1: Number of daily users and traffic records during the election day and reference day

Date July 21, 2019 July 28, 2019
Type of Day Election Day Reference Day
Number of Daily Users (Original) 158,338 151,725
Number of Traffic Records (Original) 20,811,675 20,151,678
Number of Daily Users (Filtered) 100,906 96,172
Number of Traffic Records (Filtered) 9,336,810 8,962,007

Note: The following criteria were used as filters: Japanese citizens, residents of Tokyo’s 23 wards, and signal
accuracy below 100 meters.

GPS (for iOS devices).6 To protect privacy, user ID is assigned daily, and GPS entries that

help identify users’ pinpoint addresses are eliminated by Agoop.7 Moreover, no user-level

demographic information is provided.

To estimate voter turnout, we purchased data on the foot traffic records made within

Tokyo’s 23 wards on selected days and filtered the data entries of non-residents. Specifically,

for our election day, we selected the House of Councillors election held on Sunday, July 21,

2019, prior to the onset of the COVID-19 pandemic. We also selected the following Sunday,

one week after the election, as a reference day to control for the regular foot traffic of non-

election days. If some cell-phone users regularly pass by a polling station as part of their

daily routine, some of their signals will be recorded within a predetermined radius from the

station and may therefore be mistakenly counted as votes cast. If their destination is close

to the polling station, we expect more miscoding.8 The basic characteristics of the data are

presented in Table 1. Both days have more than 150,000 original daily IDs per day, and the

numbers of traffic records recorded every five minutes are over 20 million.9

6Users agree to provide their GPS information when installing some applications (typically restau-
rant/healthcare/fitness applications).

7Specifically, Agoop drops all traffic records that fall within the 100-meter grid that contains the user’s
address.

8We explain later how we deal with this potential noise in our measure. For applications aimed at
estimating cross-sectional differences in turnout across neighborhoods, this possible source of miscoding
should be less of a concern.

9We initially purchased the data sets of two other elections in 2017. However, the data quality (such as
the length of each tracking point) has significantly improved since 2017 because of the introduction of new
software to collect GPS information. We therefore use only the data recorded in 2019.
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Table 2: Summary of weather on election day and reference day

Date June 30, July 21, July 28, August 4,
2019 2019 2019 2019

Type of Day Neither Election Reference Neither

Weather
Rainy Cloudy Sunny/cloudy

Sunnyoccasionally intermittent intermittent
cloudy rain rain

Average Temperature (Celsius) 21.6 25 27.7 29.4
Total Rainfall (mm) 5.5 0(1) 15(2) 0
Sunlight (hour) 0 0 5.6 11.5
Average Wind (m/s) 1.6 2.1 3.6 2.8
Humidity (%) 99 93 88 76

Source: The website of Japan Meteorological Agency (https://www.data.jma.go.jp/obd/stats/etrn/)
Notes:
(1) Tokyo had light rain in the morning, but rainfall less than 1 mm per hour is recorded as 0 mm in Japan.
(2) Tokyo had rain until 9:00 AM, but had no rain after that.

Because the purpose of measuring behavior on reference days is to control for regular

foot traffic, an ideal reference day should look like an election day except for the fact that

no election was held. Elections in Japan are held on Sundays. Therefore, we selected a

reference day from among the set of Sundays within a few weeks before or after the election

excluding the period of early voting, choosing the date on which weather was most similar.

In this potential set of reference days, it turned out that the day one week after the election

had the most similar weather, and so was chosen as the reference day. Table 2 presents a

summary of weather for the election day, reference day, and two other candidate reference

days that were not chosen.

Data Processing

Our primary outcome variables include the GPS-based vote counts and voter turnout rate.

Measuring these variables requires several additional coding and cleaning procedures, as the

raw Agoop GPS data contain the tracking records of (1) users currently located in the study

region, Tokyo’s 23 wards, regardless of their residential locations and voting eligibility (e.g.,
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non-Tokyo residents visiting Tokyo), and (2) users residing in the study region regardless

of their current locations (e.g., Tokyo residents traveling outside of Tokyo). In addition, as

noted earlier, the GPS data set does not provide geographically disaggregated information

on the user’s residence beyond the city or ward level, which is indispensable to construct the

turnout measures.

The coding and cleaning procedures involve the following steps. First, we simply discard

any entry that lacks precise geocoordinates by limiting our sample to the records with a GPS

accuracy of 100-meters or better.10 Reflecting the purpose of the analysis, we also drop the

entries of users (1) not residing in the 23 wards of Tokyo or (2) with current locations falling

outside of the study region. These deletion rules rely on user-specific information provided

by the Agoop GPS data.11 This procedure leaves 197,078 unique users in total, about 100

thousand unique users per day.

Second, to obtain a reliable measure of turnout, it is important to count only the cell-

phone users who went to the polling stations designated to them on the basis of their home

address. However, users’ pinpointed addresses are not disclosed in order to protect their

privacy. Therefore, we instead rely on the first signal reception of the day after 6:00 AM as

an approximate indicator of users’ addresses.12 The resultant population estimates effectively

cover 3,094 (in election day) and 3,093 (in reference day) out of 3,192 neighborhoods in the

study region.13

Third, to determine whether a user voted during polling hours, we overlay the tracking

records between 6:55 AM and 8:05 PM (7:00 AM - 8:00 PM with five-minute margins) within

a station-specific radius around the polling stations.14 As stated previously, we manually
10The 100-meter threshold was determined through parameter tuning, which we will discuss later.
11Specifically, we use “accuracy,” “citycode,” “home_citycode,” and “home_countrycode” variables in the

original Agoop GPS data.
12As with GPS accuracy described earlier, the inclusion rule of 6:00 AM was determined through parameter

tuning we discuss later.
13The neighborhood boundaries follow the 2015 census, and the total of 3,192 includes neighborhoods

without reported residents.
14Because GPS signals were delivered only once every five minutes, we set up five-minute margins so that

we do not miss the signals from opening/closing time voters.
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measured the diameter encompassing each station to identify the center point. We created

a station-specific radius by adding 10-meter margin to one-half of the diameter.15 A GPS

entry is counted as a “vote” if (1) the GPS record falls within the station-specific buffer from

a polling station, and (2) the polling station is the designated station for the user.

Validation

If our measurement strategy is ineffective, then any statistical estimates we might obtain

from the resulting measure are not credible. Thus, it is important to validate our measure

against known quantities, such as officially reported turnout at higher levels of aggregation.

We estimate two quantities through our approach, population and vote counts, and examine

the validity of each against official government statistics in this section.

Population Counts

As discussed in the previous section, we regard the first GPS record after 6:00 AM as a user’s

estimated home address. We then aggregate the numbers of unique users at the neighborhood

level and use the neighborhood level unique user count as a GPS-based population count

estimate. Official neighborhood-level population statistics are available from Kokusei Chōsa

Shōchiiki Shūkei Kekka (small-area aggregated census results). This means that we can

examine the performance of our strategy for address assignment by calculating the correlation

between the census population and the GPS-based population estimate.16

Figure 2 shows the result of a performance check using these population counts. The two

panels are scatter plots of the GPS-based population estimate in the vertical axes against

the census population counts in the horizontal axes on the election day (left panel) and

the reference day (right panel). The correlation coefficients are ρ = 0.69 and ρ = 0.67,
15The 10-meter margin was also determined through parameter tuning we discuss later.
16We used the population statistics from the 2015 census, and the six-day total for the GPS-based popu-

lation.
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(b) Reference Day (ρ = .67)

Figure 2: Performance check based on population

which is reasonably high. We do, however, observe dozens of dots that are plotted vertically

off the fitted line, indicating overestimation of GPS-based population in these areas. In a

later section on sensitivity analyses, we show that our estimation strategy controls for such

overestimation.17

Vote Counts

In Japan, the smallest unit of observation at which administrative records for voter turnout

is available is the polling station. Multiple neighborhoods are usually assigned to each

polling station. In addition, neighborhoods are occasionally split into a few smaller blocks

when doing so facilitates access to polling stations. As previously mentioned, we obtained

the polling station data from Tokyo’s 23 wards. One caveat is that although many voters

(between 20-30 percent in recent elections) make use of in-person early voting (available

since 2003), our data contain only the total number of votes including both early votes and
17See Figure A.1 for the census and estimated population counts on the election day projected onto Tokyo’s

neighborhood polygons.
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Figure 3: Performance check based on official voter turnout

election-day votes.18

To validate our measurement strategy, we aggregated the GPS-based vote counts to

the polling station level using the correspondence table between neighborhoods and polling

stations. Figure 3a shows a scatter plot of the number of votes estimated from the cell-

phone mobility data in the election day (July 21, 2019) against the counterpart for the

administrative records. Figure 3b depicts the relationship using the reference day (July

28, 2019). The left panel shows an upward pattern with some heteroskedasticity, and the

correlation between two data sets is moderate (ρ = 0.60), while the counterpart for the

reference days in the right panel is small (ρ = 0.22).

Several factors might contribute to a reduction in performance of the measure, includ-

ing: (1) incorrect coordinate inputs; (2) inadequate buffer sizes around polling stations; (3)

varying numbers of early voters; (4) demographic/socioeconomic heterogeneities; (5) varying

numbers of irrelevant “votes” (or approaches) to polling stations; and (6) general changes in
18About 28.6% of votes in Tokyo’s 23 wards came from early voting in the House of Councillors election on

July 21, 2019.(Secretariat to Election Administration Commission of Tokyo 2019a; Secretariat to Election
Administration Commission of Tokyo 2019c)
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data quality over time. The potential biases due to factors (1) and (2) need to be minimized

through tuning, and any remaining impacts need to be assessed through sensitivity analyses,

which we report later. Factor (3) is controlled for by measuring the distance to the closest

early-voting polling station for each user. Factors (4) and (5) are taken into account through

our estimation strategy. For now, we make an assumption that the number of early votes

are proportional to the number of election-day votes across polling stations. Finally, we

initially collected the data for three elections: two in 2017 and one in 2019. We decided

to use the latest election data on July 21, 2019 since the correlation was highest with this

data—indeed, Agoop introduced new software to collect location “waypoints” in 2019.19

Tuning Parameters

In the previous sections, we used the pre-determined set of three parameters to process the

data: GPS accuracy, the margin added to a station-specific radius, and the beginning of

the day. The first and second variables adjust the close cases for false positives (abstainers

who were judged as casting a vote) and false negatives (actual voters who were judged as

abstainers). The third variable affects the estimated locations of residence and corresponding

designated polling stations. Following Chen et al. (2019), we adopted an agnostic approach

in determining these parameters. That is, we prepared several options for each of these

parameters, and then selected the set of parameters that showed the best performance for

an evaluation criterion.

The panels in Figure 4 show how performance changes depending on the values of tuning

parameters. Our evaluation criterion, presented in the vertical axis of each panel, is the

election-day to reference-day difference in the correlation coefficient between the administra-

tive turnout record and estimated voter turnout aggregated at the level of a voting precinct.

Take Figure 3 for example, this quantity is calculated as .60 − .22 = .38. It turns out that
19Waypoints are intermediate points on a given route between point A and point B, such as where a user

changes direction in course.
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(a) Margin to Radius = 10m (b) Beginning of Day = 6AM (c) Signal Accuracy = 100m

Figure 4: The results of parameter tuning based on the margin added to building radius, the
timing of the first record to define users’ estimated address, and signal accuracy in meters.
The y-axis represents the difference in correlation between the election day data and reference
day data. The sub-captions indicate the tuned values for each parameter.

among the combinations we prepared, the difference in the correlation coefficients is largest

when the margin is 10 meters, GPS accuracy is 100 meters, and the beginning of the day is

set as 6:00 AM, and none of these was the minimum or maximum value for tuning. Among

the possible combinations of these parameters, the difference in the performance between

the best and worst results, or the improvement from the worst case scenario due to tuning,

was 0.054.

Application 1: Cost of Voting and Turnout

We first illustrate the substantive utility of our approach with an application based on the

rational voter model (see Downs 1957; Riker and Ordeshook 1968; Aldrich 1993). According

to this model, an individual voter will decide to turn out on election day if the cost of voting
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(C) is outweighed by the expected benefit the voter will get from electing their preferred

candidate (B) times the probability that their vote might be decisive (P ), plus the intrinsic

value (D) the voter might get from the civic act of participation: C < PB +D.20

In existing empirical tests of the rational voter model, the cost of voting has often been

proxied by the distance to the voter’s designated polling station (e.g., Haspel and Knotts

2005; Bhatti 2012; Gibson et al. 2013; Cantoni 2020; Garnett and Grogan 2021). For this

application, we focus only on the distance (in walking time) between voters’ homes and their

designated polling stations, as well as early voting stations. We do not attempt to measure

the other components of the model (P , B, D). The basic expectation is simply that a greater

distance to the polling station should reduce the likelihood of turning out to vote on election

day (i.e., a cell-phone mobility record at the polling station during voting hours).

Existing empirical tests of the rational voter model face some methodological limitations

based on how turnout and the cost of voting are measured. For example, if turnout data

are aggregated to some unit (such as a ward or voting precinct), then the cost of voting

must be measured as an average distance to a polling station across all households within

the unit, masking important individual-level variation. In contrast, direct questions about

individual-level turnout in surveys are subject to social desirability bias and over-reporting.

The GPS-based measure we introduce provides an alternative approach that can overcome

these challenges.

Key Explanatory Variables

Our key explanatory variable is the cost of voting at a designated polling station, measured

in terms of walking time needed to travel the distance. We use walking time because a sim-

ple Euclidean distance between a home neighborhood and a designated polling station does

not take into account other factors that affect the cost of voting, such as road alignments,
20There is an extensive literature, beyond the scope of this application, that further attempts to reconcile

the paradox of voting in large electorates based on elite mobilization, social pressure, and group affiliations
(e.g., Uhlaner 1989; Morton 1991; Cox, Rosenbluth, and Thies 1998; Schachar and Nalebuff 1999; Bond
et al. 2012).
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Figure 5: An example of the cost distance calculation
Note: Regions of which cost distance is over 20 min. are not shown.

hills, and traffic conditions.21 More specifically, we calculated the “cost distance” to each

polling station based on the shortest weighted distance to each polling station (Environmen-

tal Systems Research Institute 2021). Since this cost distance calculation involves multiple

parameters that may be arbitrary, we rely on the service area analysis program of ArcGIS

Network Analyst extension, a standard tool for cost distance analysis.22

Figure 5 shows the results of the cost distance calculation for a sample polling station

area in Tokyo’s Arakawa Ward, using a range of 0 to 20 minutes. As most voters in Tokyo’s

23 wards go to polling stations on foot (and to a somewhat lesser extent by bicycle), we

calculated the cost distance in walking time ranging from 0 to 30 minutes with cutoff values

in increments of 2.5 minutes. The figure illustrates that the cost distances measured in

walking time are different from a simple Euclidean distance.

Given a large proportion of early voters in the 2019 House of Councillors election, we also
21Note that walking time does not include indirect costs, such as the opportunity cost from missing work.
22The calculation was performed with the following options. Mode: Walking Time; Direction: Away from

Facilities; Cutoffs: from 2.5 to 30 minutes in increments of 2.5; Date & Time: July 21, 2019, noon; Polygon
Detail Level: High Precision; Boundary Type: Overlap; and Polygon Rings or Disks: Rings. A 0.5 unit of
ArcGIS credit is required per cutoff value for each polling station.
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collected data on early voting to control for its impact. Specifically, we geo-coded the list

of all early-voting polling stations in Tokyo’s 23 wards, provided by the Tokyo Metropolitan

Government (SEAC 2019). We then calculated the cost distances for the 205 locations in

the same way as for the election-day polling stations.23

In the validation section, we estimated each user’s home neighborhood at a 100-meter-grid

scale. This allows us to measure the estimated walking time from the grid to a designated

polling station for each voter. After filtering out irrelevant polling stations, 71 percent of

grids have a unique cost distance value. For the remaining grids with multiple cost distance

values, we employ sampling strategies explained in the following subsection. We drop the

users whose estimated walking time to an election-day polling station is over 30 minutes,24

and the remaining sample contains 92,400 unique daily users in the election day and 87,848

unique daily users in the reference day.

Estimation Model

We construct a two-day pooled cross-sectional data set consisting of the cellphone users on

July 21, 2019 (the election day) and the reference day (one week later). We use a difference-in-

differences (DID) estimation strategy to test whether a user’s likelihood of going to a polling

station on the election day decreases significantly compared to the counterpart estimate for

the reference day as the estimated walking time to polling station increases (see, e.g., Nunn

and Qian 2011). We estimate a linear probability model with the following form:

V oteigst =
11∑
k=1

αkI
min.

2.5(k+1)
2.5k

gs +
11∑
k=1

βk

(
I
min.

2.5(k+1)
2.5k

gs × IElec
t

)
(1)

+
12∑
j=1

γjI
EV

2.5(j+1)
2.5j

gs +
12∑
j=1

δj

(
I
EV

2.5(j+1)
2.5j

gs × IElec
t

)
+
∑
s

λsIs + ρIElec
t + ϵigst,

23The same parameters were used except Date & Time, which was set at July 17, 2019, noon. Mail-in
absentee voting is only permitted for a small number of voters with physical handicaps; all other early voters
must vote in person.

24In densely-populated Tokyo’s 23 wards, it is unlikely for the estimated time to take more than 30 minutes,
so such values are probably due to some errors in home neighborhood estimation or cost distance calculation.
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where V oteigst is whether a cellphone user i who lives in a grid g went to vote at their

designated polling station s in day t. Imin.
2.5(k+1)
2.5k

gs is a dummy variable that takes the value of

1 if an estimated walking time from a grid g to a polling station s is from 2.5k to 2.5(k+ 1)

minutes. Similarly, IEV
2.5(j+1)
2.5j

gs is a dummy variable that takes the value of 1 if a walking time

to the closest polling station for early voting is from 2.5k to 2.5(k + 1) minutes. IElec
t is a

dummy variable that takes the value of 1 on the election day,
∑

s λsIs is polling station fixed

effects, and the final term in the equation (ϵigst) is a disturbance term.

The quantities of interest are
∑11

k=1 βk that represent the changes in the probability of

voting for the voters whose walking time to their polling stations are from 2.5k to 2.5(k+1)

minutes compared with the counterfactual situation of a walking time from 0 to 2.5 minutes

(the baseline). These coefficients are expected to be negative, and their sizes are expected

to become larger in absolute terms as the walking time to the polling station increases

(H1 : βk+1 < βk < 0). We also consider the impact of the proximity to early-voting polling

stations, represented by
∑12

j=1 δj.25 People are more likely to take the opportunity to vote

early if the polling stations for early voting are nearby. Therefore, we expect that the

proximity to polling stations for early voting will decrease the likelihood of voting on election

day, so these coefficients are expected to be positive and become larger as walking time

increases (H2 : δj+1 > δj > 0).

Results

Figure 6 shows the estimated effects of walking time to polling station on voter turnout

on election day. The point estimates and confidence intervals in red are for models based

on distance to the polling station, whereas those in blue are for distance to an early-voting

station. Point estimates and CIs are obtained from the sample in which the polling stations

judged as having been voted at (based on our algorithm) are first selected as the desig-

nated polling stations, and the other polling stations were randomly selected when multiple
25For early-voting dummies, j takes the value up to j = 12 representing “More than 30 minutes” not “30

to 32.5 minutes.” Since about one percent of the users fall in this category, we keep them in the sample.
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Figure 6: Effects of walking time to polling station on voter turnout
Note: Linear probability model with robust standard errors for 95% confidence intervals. The coefficients∑11

k=1 βk and
∑12

j=1 δj in Eq.1 are on the vertical axis. See Table A.1 for the results in table format. The
point estimates and CIs in red were obtained from the sample in which the polling stations judged as being
voted in our algorithm are first selected as designated polling stations, and remaining polling stations were
randomly selected when multiple designated polling stations exist for a voter. Blue rounded rectangles are
the 1,000 point estimates that were obtained from alternative samples where observations, or voters, were
randomly selected when multiple designated polling stations exist for a voter.

designated polling stations exist for a would-be voter (cell-phone user). The red and blue

rounded rectangles surrounding the main point estimates and CIs are collections of alter-

native point estimates obtained from alternative samples where observations (users) were

randomly selected when multiple designated polling stations exist.

The results paint a picture that is consistent with the expectations of the rational voter

model. As cost (walking distance to the polling station) increases, the likelihood of voting

(visiting the polling station) on election day decreases. In addition, the probability of voting

on election day is higher for voters whose designated early-voting polling stations are less

convenient (further from home).26 Compared to the baseline of 0 to 2.5 minutes of walking
26One limitation is that we lack the ability to directly investigate the usage of early voting, since we do

not have cell-phone mobility data for early-voting days in our panel. The coefficient of δ12, the category
omitted from the graph, is .119 (s.e. =.015).
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time, all of the coefficients for larger cost distances are negative and statistically significant.

The substantive size of the effects is also large: compared to a voter with almost no travel

distance (the baseline), the probability of turning out to vote on election day for a voter

whose polling station is more than 10 minutes away decreases by more than 10 percentage

points.

An additional point about the results in Figure 6 that merits attention is that, although

the coefficients change with distance to the polling station, the rate of change slows as

stations get further away. This suggests that there exists some threshold of exclusion for the

relationship between convenience and voting that affects some voters (e.g., casual voters),

but not others (e.g., committed voters).

Sensitivity Analyses

Although the mobility data we use provide a powerful tool for studying questions like turnout,

these data can potentially be fraught with measurement error. For example, measurement

error in Y (turnout) can widen confidence intervals, and can also cause attenuation bias,

which can also occur when measurement error exists in X (distance to a polling station).

In this subsection, we perform sensitivity analyses to gauge the impact of two major

sources of measurement error. The first type of error originates from the fact that we can

only observe users’ noisy GPS signals to determine their locations. The tuning of parameters,

which we described earlier, helps to minimize noise by selecting users whose signals are more

accurate and by changing the size of the radius surrounding each polling station used to

determine whether a user voted (entered the polling station). To evaluate whether this

effort sufficiently reduces noise, and whether a failure to do so poses a risk to our ability to

make correct inferences, we perform the following sensitivity analysis.

The line plots in Figure 7 show the point estimates of the effect of walking time to polling

station on election-day turnout estimated with the sample with varying signal accuracy (in

the left panel) and margin to a polling-station specific radius (in the right panel). The signal
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Figure 7: Sensitivity analyses based on signal accuracy and polling station radius
Note: The left panel replicates the results from Figure 6 with varying signal accuracy for the sample of
included users; the right panel shows corresponding results when varying the margin of the radius around
the polling station for coding a user as having voted (entered the polling station).

accuracy and margin range from 50 meters to 600 meters and from 5 meters to 50 meters,

respectively. In the left panel, the estimates for the sample of users with 50m signal accuracy

(i.e., a worse signal accuracy) is closer to zero (reflecting attenuation bias). However, the

basic pattern from the main results is apparent regardless of signal accuracy. Similarly, the

larger the radius used for each polling station, the closer the coefficients are to zero, while

the basic pattern holds.

The second source of measurement error is the misclassification of foot traffic near polling

stations as “voting,” since many polling stations are located in places where people might

gather anyway. This kind of misclassification can take the form of a false negative (coding

non-voting users as having voted) or a false positive (coding voting users as having not-

voted). While the extent of this type of measurement error is difficult to assess, the DID

estimation using a reference day provides a way to parse this potential source of error.

Specifically, we can decompose the observed DID coefficients into four parts and visualize
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Figure 8: Sensitivity analysis based on decomposition of DID estimation
Note: The total effect ≈ lower left panel + lower right panel − upper left panel − upper left panel.

what kinds of systematic errors occur, in which data-generating processes, to identify the

type of assumptions necessary to accept our results.

Figure 8 presents this decomposition of the DID effects. Overall, users in the data

can be grouped into four types: those coded as having voted on the election day, those

coded as not having voted on the election day, and the two counterparts on the reference

day. For each component, we keep the selected component unchanged while eliminating

all systematic variation of the other three components by randomly assigning the outcome

variable according to the flow chart shown in Figure A.2. When only the information of

Y = 1 of election day is retained (lower left panel of Figure 8), we get a picture similar to

Figure 6. This means that the majority of the estimated effects in the main results can be

attributed to the users who were coded as having voted on election day.

Other panels in Figure 8 show evidence of potential confounding. For example, when
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only the information of Y = 1 on the reference day is retained, the coefficients are positive.

Interpreting these results requires some caution. Because the impact of Y = 1 on election

day is 0 in this case (due to randomization) and in DID estimation the effect estimates

are obtained by Yelec − Yref , users who live further than 2.5 minutes away in terms of cost

distance are about 10% less likely to be (mis)coded as having voted compared with users

living within 0-2.5 minutes distance on the reference day. Equivalently, users living within

0-2.5 minutes distance on the reference day are about 10% more likely to be miscoded as

having voted because of the proximity of their residence to polling stations.

We do not know whether users who were coded as having voted (Y = 1) on election

day suffer from the same kind of bias. However, if we can assume they did, then the DID

estimation rightly remove this bias and identifies the effects. If a researcher still worries

about this kind of bias, a solution is to drop the 0-2.5 minutes (or closest) category of user,

and instead apply the second-closest category as the baseline. In the lower right panel, Y = 0

on the election day sample shows limited but consistent effects because the cost distance does

not affect most of the users with Y = 0 while there are somewhat more Y = 0 users for

locations further from the polling station.

Overall, these sensitivity analyses are useful for adjudicating the validity of the GPS-

based measure, ensuring that it is appropriately tuned to address the research question at

hand, and identifying the sources of potential systematic bias. In addition, the sensitivity

analyses help to clarify the necessary assumptions for the DID estimation design to identify

the estimands of interest. The analyses we have performed here may need to be adapted or

supplemented in other applications, as needed.

Application 2: Effects of Community-Level Destruction

Our second application to demonstrate the substantive utility of our approach uses data

on neighborhood-level damages caused by the firebombing of Tokyo during World War II.

23



A growing literature at the intersection of research on political violence and historical po-

litical economy considers how exposure to wartime violence and other forms of destruction

or trauma influences social behavior, including participation in elections (for a review, see

Walden and Zhukov (2020)). An influential argument in existing studies is that exposure

to war violence might increase prosocial behavior, including participation in elections, due

to the activation of collective action (e.g., Blattman 2009; Bellows and Miguel 2009; Gilli-

gan, Pasquale, and Samii 2014; Lupu and Peisakhin 2017; Kage 2021). However, empirical

evidence is limited to a few cases, and large-scale destruction with fewer survivors might

have long-term detrimental effects on turnout—due to, for example, the impact of wholesale

destruction on neighborhood-level social capital and economic well-being (Harada, Ito, and

Smith 2021).

To explore the relationship between historical exposure to community-level destruction

and contemporary turnout outcomes, we use data from Harada, Ito, and Smith (2021), who

introduce a data set of neighborhood-level damages to Tokyo following the 1945 firebombing

by the US military. Although this represents one of the most disaggregated data sets of war

violence and large-scale destruction (cf. Kocher, Pepinsky, and Kalyvas 2011), the available

outcome variables at the same unit of analysis (neighborhood) are limited to socioeconomic

indicators and crime statistics. Combining the Tokyo firebombing data and our turnout

estimates allows us to offer additional quantitative evidence that speaks to the ongoing debate

in the literature regarding the long-term effects of exposure to violence and community-level

voter behavior.

Additional Data Processing

To illustrate the substantive utility of our estimated turnout measure, we use a data set on

individual level voter turnout from the last section and neighborhood-level damages caused

by the 1945 firebombing of Tokyo (Harada, Ito, and Smith 2021). This data set is based on

georeferenced historical aerial photographs and remote-sensing techniques.
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Figure 9: Distribution of the Air Raid Damages Across Tokyo’s 23 Wards
Note: Shading of the neighborhoods indicates the damage ratio in percentage scale. The neighborhoods
excluded from our sample are left blank. Reproduced from Harada, Ito, and Smith (2021).

Here, we refer to the chō-chōmoku as neighborhood. Chō-chōmoku is the lowest-level ad-

ministrative unit in Japan for measuring census-based socioeconomic variables, and roughly

corresponds to the popular notion of a neighborhood.27 Our key variable of interest from

this data set is the fraction of destroyed residential area relative to the overall residential

area within each neighborhood (henceforth “damage ratio”), which is conceptually defined

as follows:

Damage =
Destroyed residential area

Overall residential area (2)

Each ratio variable was assigned a value ranging from 0% to 100% in increments of 10%,
27This is considerably smaller than the units used in other studies of long-term bombing effects (e.g.,

Davis and Weinstein 2002; Brakman, Garretsen, and Schramm 2004; Kocher, Pepinsky, and Kalyvas 2011;
Lin 2020).
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for an eleven-unit scale. We treat the damage ratio as a continuous variable for our analysis.

Figure 9 presents the damage ratios across neighborhoods of Tokyo’s 23 wards, as reported

by Harada, Ito, and Smith (2021).

Estimation Model and Variables

We construct the two-day pooled cross-sectional data set similar to the previous section and

adopt linear probability model with a difference-in-difference specification with a continuous

treatment variable to test whether the amount of firebombing damage affects estimated

individual turnout in contemporary Tokyo. Neighborhood-level population is used as a

weight in regression. Also, the previous section showed the concentration of misclassified

voters in areas that are close to the election-day polling stations, of which measurement

errors causes larger standard errors and attenuation biases. Therefore, we exclude the voters

whose estimated address is located from 0 to 2.5 minute in cost distance to their designated

polling station.28 Our estimation model is formally written as follows:

V oteignswt = τ
(
Damagen × IElec

t

)
+

2,139∑
n=1

λnIn + ρIElec
t (3)

+
10∑
k=1

αkI
min.

2.5(k+1)
2.5k

gs +
11∑
k=1

βk

(
I
min.

2.5(k+1)
2.5k

gs × IElec
t

)

+
12∑
j=1

γjI
EV

2.5(j+1)
2.5j

gs +
12∑
j=1

δj

(
I
EV

2.5(j+1)
2.5j

gs × IElec
t

)

+
20∑
h=1

θh
(
Lon.pn × Lat.qn × IElec

t : p+ q ≤ 5, 0 ≤ {p, q}, {p, q} ∈ Z
)

+
5∑

m=1

ϕm

(
IPm

n × IElec
t

)
+

5∑
m=1

ψm

(
APm

n × IElec
t

)
+ π

(
ln(Pop.Density1939)n × IElec

t

)
+ ζ

(
%Residencen × IElec

t

)
+ ϵignswt,

28We show the results including these voters in robustness checks.
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where V oteignswt is the binary estimate of whether a cellular user, i, have voted in grid, g in

neighborhood, n, at polling station, s, in prewar ward, w, in day, t. Many subscripts reflect

multi-level nature of our data. Our key treatment variable, Damagen × IElec
t , is measured

as the interaction between Damagen and IElec
t , where IElec

t is a dummy variable that takes

the value of 1 on the election day, and Damagen is the fraction of destroyed residential area

relative to the overall residential area within each neighborhood. The effects of the bombing

are measured by τ .

All other terms represent control variables and an error term.29 ∑2,139
n=1 λnIn is neighbor-

hood fixed effects,
∑20

h=1 θh(Lon.
p
n×Lat.qn× IElec

t : p+ q ≤ 5, 0 ≤ {p, q}, {p, q} ∈ Z) is the set

of polynomials between standardized longitude and latitude of neighborhood centroids up to

the fifth-order polynomial, interacted with the election day dummy.
∑5

m=1 ϕm(IP
m
n × IElec

t )

and
∑5

m=1 ψm(AP
m
n ×IElec

t ) are the set of polynomials of the standardized distances from the

Imperial Palace and the nearest aiming point up to the fifth order polynomial, interacted

with the election day dummy, respectively. Finally, ln(Pop.Density1939)n is the logged

population density as of 1939 (in population per km2), and %Residencen is a human-coded

prewar residence ratio. A description of other terms is provided in the previous section.

Results

Table 3 reports the main regression estimates for the effect of the damage on our estimated

voter turnout. Model (1) only includes the variables in the first line of Equation 3, while

Models (2) includes all the control variables listed.

The results suggest a persistent and negative association between the extent of aerial

bombing damages and voting behavior in the present day. Regardless of inclusion of control

variables, Damage× Election Day is negative and statistically significant (Models (1) and

(2)). The negative coefficient estimates of Damage × Election Day indicate an additional
29Non-interacted cost distance terms are not subsumed by neighborhood fixed effects because some neigh-

borhoods are divided into a few smaller areas, each of which is assigned to a different designated polling
stations.
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Table 3: Difference-in-differences regression of estimated election-day turnout on the level of
damages from the Tokyo firebombing

Dependent Variable:
Estimated Vote (1) (2)

Damage × Election Day −0.0138∗∗ −0.0206∗∗

(0.0054) (0.0081)

Neighborhood FE (2,139 categories) ✓ ✓
Day FE ✓ ✓
Covariates

Cost distance to election-day polling station ✓
Cost distance to early-voting polling station ✓

Covariates × Election Day
Cost distance to election-day polling station ✓
Cost distance to early-voting polling station ✓
Fifth-ordered polynomials(longitude, latitude) ✓
Fifth-ordered distance to the Imperial Palace ✓
Fifth-ordered distance to the closest aiming point ✓
Logged neighborhood population density 1939 ✓
Prewar Residenatial Ratio ✓

Observations 120,495 120,495
Within Polling Station R2 0.0417 0.0573

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Linear probability model with population
weights. Standard errors clustered by neighborhoods in parentheses. All models exclude
the users whose cost distance is from 0 to 2.5 minutes. Difference-in-differences estimation
is performed between the election day(July 21, 2019) and the reference day(July 28, 2019.)
The set of Covariates includes: 10 dummy variables of cost distance to the closest early-
voting polling stations; 12 dummy variables of cost distance to the closest election-day
polling stations. The set of Covariates × Election Day includes: 11 dummy variables
of cost distance to the closest early-voting polling stations; 12 dummy variables of cost
distance to the closest election-day polling stations; 20 fifth-order polynomials of longitude
and latitude including interactions; fifth-order polynomials of standardized distance to the
Imperial Palace; fifth-order polynomials of standardized distance to the closest aiming points
of the US bombing campaign in WWII; logged neighborhood-level population density in
1939 (population counts per km2); ratio of prewar residential areas, each interacted with
the election day dummy.

decrease in the probability of going to their polling stations on election days (July 21, 2019)

in the neighborhoods with heavier bombing damage, relative to the baseline of non-election

days (July 28, 2019).30

Putting the size of the estimated coefficient into perspective, a voter living in a neigh-
30As Nunn and Qian (2011, p. 619) note, choosing a different reference period would result in changes in

the point estimates and standard errors.
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borhood that had no damage would go to vote with 2 percentage-point lower probability

if this neighborhood had been completely destroyed in the firebombing based on Model (3)

of Table 3. In all, the systematic negative association in Models (1)–(2) suggests a form of

persistent legacies of the World War II air raids on voting behavior in Tokyo today, com-

plementing the findings of Harada, Ito, and Smith (2021) with regard to social capital and

socioeconomic outcomes.

Robustness Checks

Table 4 summarizes the results of several robustness checks. First, we re-estimate Model (2)

in Table 3 including the voters whose estimated address is located from 0 to 2.5 minute in

cost distance. Second, the model is re-estimated without using population weights. Third,

we clustered the standard errors by Tokyo’s prewar 35 wards instead of neighborhoods to

provide a conservative estimate of standard errors against potential spatial correlations.

Finally, we used the cost distance to the election-day polling stations as a negative control

outcome, a class of falsification test (Arnold and Ercumen 2016). The cost distance should

not be correlated with raid damage but largely share the same construction process as the

vote count. Therefore, a weak or null association between raid damages and our estimated

cost distance provides some assurance that our estimates are unlikely to be attributable to

systematic biases in our mobility data processing.
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Table 4: Summary of the robustness checks: estimation with observations very close to
polling stations (column 1), without population weights (column 2), with SEs clustered by
prewar 35 wards (column 3), and with cost distance to election-day polling station as a
negative control outcome (column 4)

Type of Robustness Checks:

Dependent variable: Including Estimated w/o Standard errors Using cost-
estimated vote observations population clustered by distance as
(except Model(4)) very close to PS weights prewar 35 wards an outcome

(1) (2) (3) (4)

Damage × Election Day −0.0168∗∗ −0.0137∗ −0.0206∗∗ −0.0330
(0.0082) (0.0075) (0.0094) (0.0541)

Neighborhood FE ✓ ✓ ✓ ✓
Day FE ✓ ✓ ✓ ✓
Covariates

Cost-dist.to election-day polling st. ✓ ✓ ✓
Cost-dist.to early-voting polling st. ✓ ✓ ✓ ✓

Covariates × Election Day
Cost-dist.to election-day polling st. ✓ ✓ ✓
Cost-dist.to early-voting polling st. ✓ ✓ ✓ ✓
5th-ordered polynomials(lon., lat.) ✓ ✓ ✓ ✓
5th-ordered dist.to the Palace ✓ ✓ ✓ ✓
5th-ordered dist.to aiming points ✓ ✓ ✓ ✓
Logged pop.density 1939 ✓ ✓ ✓ ✓
Prewar Residenatial Ratio ✓ ✓ ✓ ✓

Observations 137,403 120,495 120,495 120,495
Within Polling Station R2 0.0854 0.0535 0.0573 0.0281

Notes: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Linear probability model with population weights except
Model (2). Standard errors in parentheses are clustered by neighborhoods in Models 1 to 3 and by prewar
35 wards in Model 4. All models except Model (1) exclude the users whose cost distance is from 0 to 2.5
minutes. Difference-in-differences estimation is performed between the election day (July 21, 2019) and
the reference day (July 28, 2019.) In Model (2), population weights are calculated from the neighborhood
level population counts divided by the number of users in the sample. See Table 3 for the description of
covariates.

The results of Models (1)–(3) in Table 4 show that the estimated coefficients are negative

and statistically significant consistent with their counterparts in Table 3. A slightly smaller

coefficient in Model (1) indicates that the bias due to misclassification attenuates the negative

impact of the bombing. Only a slight increase in standard error in Model (3) may indicate

clustering at the neighborhood level already takes into account much of potential serial

correlation within a geographical unit.

Importantly, Damagen × IElec
t is not systematically associated with the cost distance

estimates in Model (4). The lack of systematic association provides further confidence that
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the estimates in Models (1)–(3) capture the associations specific to the mobility patterns

around polling stations on election days, rather than omitted confounding structures inflating

the GPS-based vote counts.

Discussion

Our finding that the bombing of Tokyo lowered contemporary voter turnout may seem to

contradict past studies based on the prosocial hypothesis, i.e., that exposure to violence

leads to higher levels of political participation (e.g., Bauer et al. 2016). However, careful

evaluations of potential mechanisms proposed in these studies in the sociopolitical context of

postwar Tokyo paints a more nuanced picture. Below, we discuss how the context of postwar

Tokyo is different from contexts in which the prosocial hypothesis has been developed, and

that the mechanism supported by our finding is a destruction of social capital, which has

not previously been extensively discussed.

First, 77 years since the air raids, the first-generation war victims are relatively small in

number. Accordingly, post-traumatic growth, one of the main drivers of victims’ prosocial

behavior, can play only a very limited role in contemporary Tokyo. Second, the process of

purging and coping among survivors (Gilligan, Pasquale, and Samii 2014; Hadzic, Carlson,

and Tavits 2020), another mechanism supporting the prosocial hypothesis, only applies when

residents in damaged and undamaged communities have different wartime experience. How-

ever, all residents in Tokyo’s dense urban neighborhoods faced similar risk of death due to

the indiscriminate nature of the bombing. They were also mobilized to communal activities

such as procurement of metal and fire drill (Watanabe 2013), which served as a building

block of postwar civic society (Kage 2010).

Third, the existing literature reports that intergenerational transmission of war memory,

whether it is through family, community or government, decreases the support for perpe-

trators and related parties (Lupu and Peisakhin 2017; Rozenas, Schutte, and Zhukov 2017;

Dinas, Fouka, and Schläpfer 2021), but does not affect turnout. Only when major existing
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parties either support or oppose perpetrators does war memory have an effect on turnout.

This is unlikely to be the case in Japan, where political parties take ideological positions

broad enough to capture various transmitted emotions and perspectives.

Finally, we argue that “destruction of civic associations” (Gilligan, Pasquale, and Samii

2014) is the plausible mechanism in contemporary Tokyo. Harada, Ito, and Smith (2021)

show that the air raids lowered the organizational strength of neighborhood associations, a

key barometer of a neighborhood’s geographically-specific social capital. The role of norms

and social capital gained through active civil participation and group membership in turnout

decisions has been emphasized in previous studies (e.g., Uhlaner 1989; Morton 1991; Cox,

Rosenbluth, and Thies 1998; Schachar and Nalebuff 1999; Bond et al. 2012), and the negative

relationship between the damage and turnout coincides with this idea.31

Conclusion

Scholars concerned with substantive questions related to voting behavior—whether as ex-

planatory factors or outcomes—have long been hamstrung by the crude availability of the

most basic variable of interest: turnout. Although turnout is widely recognized as a marker

of democratic health, individual-level data on turnout is often difficult to obtain, or is unre-

liable due to over-reporting by voters.

Turnout is also rarely studied at the level of small geographic units, such as communities.

Although decades of research suggests that the axiom that “all politics is local” applies

to voter mobilization, existing studies tend to focus on municipalities, counties, or larger

administrative units (e.g., Key 1949; Rice and Macht 1987; Meredith 2013; Górecki and

Marsh 2012; Fiva, Halse, and Smith 2021). This data limitation may prevent scholars from

asking questions and obtaining answers pertaining to more fine-grained political processes,

how networks function within communities, and the political impacts of localized events.
31The security dilemma, referring to vicious cycle of growing mutual distrust in this context, can also

lower the political participation of affected region (Gilligan, Pasquale, and Samii 2014). However, this only
occurs in a situation where internal conflicts occur, which does not apply to wartime Tokyo.
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The approach we have described in this study provides a solution to this problem, using

the increasingly available “big data” on cell-phone mobility. We have demonstrated how

mobility data can provide reasonable proxies for voter participation at the individual level

(which allows for aggregation to any unit of choice), and demonstrated the utility of our

estimated measure of turnout for studying two substantive questions of interest to political

science: whether the distance to a polling station reduces the likelihood of participating

in elections; and whether wartime destruction of communities generates persistent negative

effects on voter participation.

Naturally, there are also some limitations to our approach, including the cost of obtaining

the data, and necessary safeguards to protect the privacy of cell-phone users. However,

the potential costs might be greater than the costs of (1) abandoning important questions

due to insufficient or poor-quality data; or (2) obtaining inaccurate or imprecise answers

to important questions due to the aggregation of turnout and other variables of interest at

higher levels. Scholars of voting behavior should weigh these concerns carefully, and consider

whether the approach we introduce is suitable for their research designs.

We believe that our approach also opens up potential questions and applications in

political science beyond the study of turnout. For example, how many constituents visit

the campaign offices of men versus women candidates before and after elections? Where

do politicians choose to stage campaign events (such as the street-level oratory sessions

common in Japan and other democracies), and do these events help to inform, mobilize, or

persuade voters who reside nearby? Numerous future research questions become possible

when potential treatments and outcomes are measured at a sufficiently disaggregated level

thanks to cell-phone mobility data.
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A Appendix Figures and Tables
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Figure A.1: Performance check based on population for the election day (ρ = .69)

Figure A.2: Flow chart of constructing randomized data sets for the sensitivity analysis
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Table A.1: The difference in differences regression of voting on election day on the estimated
minutes to a polling station

Outcome Variable: Voted on the election day (1) (2)
b s.e. b s.e.

Election day 0.157∗∗∗ (0.006) 0.115∗∗∗ (0.008)
Min. to PS: 2.5 - 5 −0.114∗∗∗ (0.004) −0.114∗∗∗ (0.004)
Min. to PS: 5 - 7.5 −0.135∗∗∗ (0.004) −0.135∗∗∗ (0.004)
Min. to PS: 7.5 - 10 −0.145∗∗∗ (0.004) −0.145∗∗∗ (0.004)
Min. to PS: 10 - 12.5 −0.146∗∗∗ (0.004) −0.145∗∗∗ (0.004)
Min. to PS: 12.5 - 15 −0.144∗∗∗ (0.004) −0.144∗∗∗ (0.004)
Min. to PS: 15 - 17.5 −0.143∗∗∗ (0.005) −0.142∗∗∗ (0.005)
Min. to PS: 17.5 - 20 −0.122∗∗∗ (0.008) −0.122∗∗∗ (0.008)
Min. to PS: 20 - 22.5 −0.133∗∗∗ (0.007) −0.135∗∗∗ (0.007)
Min. to PS: 22.5 - 25 −0.145∗∗∗ (0.007) −0.146∗∗∗ (0.007)
Min. to PS: 25 - 27.5 −0.128∗∗∗ (0.008) −0.130∗∗∗ (0.009)
Min. to PS: 27.5 - 30 −0.136∗∗∗ (0.007) −0.146∗∗∗ (0.007)
Election day × Min. to PS: 2.5 - 5 −0.047∗∗∗ (0.006) −0.047∗∗∗ (0.006)
Election day × Min. to PS: 5 - 7.5 −0.072∗∗∗ (0.006) −0.074∗∗∗ (0.006)
Election day × Min. to PS: 7.5 - 10 −0.090∗∗∗ (0.006) −0.094∗∗∗ (0.006)
Election day × Min. to PS: 10 - 12.5 −0.108∗∗∗ (0.006) −0.114∗∗∗ (0.006)
Election day × Min. to PS: 12.5 - 15 −0.124∗∗∗ (0.007) −0.134∗∗∗ (0.007)
Election day × Min. to PS: 15 - 17.5 −0.115∗∗∗ (0.010) −0.131∗∗∗ (0.010)
Election day × Min. to PS: 17.5 - 20 −0.151∗∗∗ (0.011) −0.176∗∗∗ (0.011)
Election day × Min. to PS: 20 - 22.5 −0.143∗∗∗ (0.010) −0.169∗∗∗ (0.011)
Election day × Min. to PS: 22.5 - 25 −0.134∗∗∗ (0.011) −0.162∗∗∗ (0.011)
Election day × Min. to PS: 25 - 27.5 −0.157∗∗∗ (0.009) −0.196∗∗∗ (0.010)
Election day × Min. to PS: 27.5 - 30 −0.156∗∗∗ (0.006) −0.176∗∗∗ (0.007)
Min. to Early PS: 2.5 - 5 0.008∗∗ (0.004)
Min. to Early PS: 5 - 7.5 0.012∗∗∗ (0.004)
Min. to Early PS: 7.5 - 10 0.015∗∗∗ (0.004)
Min. to Early PS: 10 - 12.5 0.017∗∗∗ (0.004)
Min. to Early PS: 12.5 - 15 0.014∗∗∗ (0.004)
Min. to Early PS: 15 - 17.5 0.017∗∗∗ (0.004)
Min. to Early PS: 17.5 - 20 0.016∗∗∗ (0.005)
Min. to Early PS: 20 - 22.5 0.015∗∗∗ (0.005)
Min. to Early PS: 22.5 - 25 0.015∗∗ (0.006)
Min. to Early PS: 25 - 27.5 0.011 (0.008)
Min. to Early PS: 27.5 - 30 0.009 (0.009)
Min. to Early PS: Over 30 0.031∗∗∗ (0.009)
Election day × Min. to Early PS: 2.5 - 5 0.025∗∗∗ (0.007)
Election day × Min. to Early PS: 5 - 7.5 0.032∗∗∗ (0.006)
Election day × Min. to Early PS: 7.5 - 10 0.039∗∗∗ (0.006)

Continued on next page
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Table A.1 – continued from previous page
Outcome Variable: Voted on the election day b s.e. b s.e.
Election day × Min. to Early PS: 10 - 12.5 0.047∗∗∗ (0.006)
Election day × Min. to Early PS: 12.5 - 15 0.056∗∗∗ (0.007)
Election day × Min. to Early PS: 15 - 17.5 0.063∗∗∗ (0.007)
Election day × Min. to Early PS: 17.5 - 20 0.065∗∗∗ (0.008)
Election day × Min. to Early PS: 20 - 22.5 0.074∗∗∗ (0.009)
Election day × Min. to Early PS: 22.5 - 25 0.086∗∗∗ (0.010)
Election day × Min. to Early PS: 25 - 27.5 0.073∗∗∗ (0.013)
Election day × Min. to Early PS: 27.5 - 30 0.082∗∗∗ (0.015)
Election day × Min. to Early PS: Over 30 0.119∗∗∗ (0.015)
Constant 0.148∗∗∗ (0.004) 0.135∗∗∗ (0.005)

Election-Day Polling Station Fixed Effects ✓ ✓
Observations 180,248 180,248
Adjusted R2 0.101 0.103
Notes: ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01. Robust standard errors are in parentheses.
Election day and reference day indicate July 21, 2019 and July 28, 2019, respectively.
“Min.” and “PS” represent minutes and polling stations, respectively.
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